Filtered By:
Source: Molecular Neurobiology

This page shows you your search results in order of relevance. This is page number 18.

Order by Relevance | Date

Total 278 results found since Jan 2013.

Imeglimin Is Neuroprotective Against Ischemic Brain Injury in Rats —a Study Evaluating Neuroinflammation and Mitochondrial Functions
This study demonstrates that post-stroke treatment with imeglimin exerts neuroprotec tive effects by reducing infarct size and neuronal loss possibly via the resolution of neuroinflammation and partly via inhibition of mPTP opening in neurons and astrocytes.Graphical abstract
Source: Molecular Neurobiology - March 7, 2022 Category: Neurology Source Type: research

Recent Synergy of Nanodiamonds: Role in Brain-Targeted Drug Delivery for the Management of Neurological Disorders
AbstractThe aim of the present review article is to summarize the role of nanodiamonds in various neurological diseases. We have taken related literature of making this review article from ScienceDirect, springer, Research gate, PubMed, Sci-finder, etc. The current approaches for treating neurological conditions such as glioblastoma includes chemotherapy or combination anti-retro viral therapy for HIV (human immunodeficiency virus) or use of anti-Alzheimer drugs during cognitive impairment. These approaches can provide only symptomatic relief as they do not target the cause of the disease due to their inability to penetrat...
Source: Molecular Neurobiology - May 27, 2022 Category: Neurology Source Type: research

The Key Role of Magnetic Resonance Imaging in the Detection of Neurodegenerative Diseases-Associated Biomarkers: A Review
AbstractNeurodegenerative diseases (NDs), including chronic disease such as Alzheimer ’s disease, Parkinson’s disease, Huntington’s disease, and multiple sclerosis, and acute diseases like traumatic brain injury and ischemic stroke are characterized by progressive degeneration, brain tissue damage and loss of neurons, accompanied by behavioral and cognitive dysfunctions. So far , there are no complete cures for NDs; thus, early and timely diagnoses are essential and beneficial to patients’ treatment. Magnetic resonance imaging (MRI) has become one of the advanced medical imaging techniques widely used in the clinic...
Source: Molecular Neurobiology - July 12, 2022 Category: Neurology Source Type: research

Correction to: Neuroprotective Effect of E3 Ubiquitin Ligase RNF8 Against Ischemic Stroke via HDAC2 Stability Reduction and Reelin-Dependent GSK3 β Inhibition
Source: Molecular Neurobiology - July 5, 2022 Category: Neurology Source Type: research

Astrocyte-Derived TNF- α-Activated Platelets Promote Cerebral Ischemia/Reperfusion Injury by Regulating the RIP1/RIP3/AKT Signaling Pathway
In this study, we created an I/R mouse model via middle cerebral artery occlusion and reperfusion (MCAO/R) and analyzed the transcriptomic profiles of the ipsilateral and contralateral cortices using RNA-seq. We found that cerebral I/R injury induced platelet invasion and accumulation in the cerebral cortex by stimulating TNF- α secretion from activated astrocytes in the ischemic region, while TNF-α expression enhanced platelet reactivity through the RIP1/RIP3/AKT pathway. Furthermore, the inoculation of TNF-α-stimulated platelets aggravated I/R injury in mice, whereas the administration of anti-TNF-α antibodies at th ...
Source: Molecular Neurobiology - July 4, 2022 Category: Neurology Source Type: research

miR-383-5p Regulated by the Transcription Factor CTCF Affects Neuronal Impairment in Cerebral Ischemia by Mediating Deacetylase HDAC9 Activity
AbstractStroke, the leading cause of long-term disability worldwide, is caused by the blockage or hemorage of cerebral arteries. The resultant cerebral ischemia causes local neuronal death and brain injury. Histone deacetylase 9 (HDAC9) has been reported to be elevated in ischemic brain injury, but its mechanism in stroke is still enigmatic. The present study aimed to unveil the manner of regulation of HDAC9 expression and the effect of HDAC9 activation on neuronal function in cerebral ischemia. MicroRNAs (miRNAs) targeting HDAC9 were predicted utilizing bioinformatics analysis. We then constructed the oxygen glucose depri...
Source: Molecular Neurobiology - August 4, 2022 Category: Neurology Source Type: research

Investigation of Mitochondrial Related Variants in a Cerebral Small Vessel Disease Cohort
AbstractMonogenic forms of cerebral small vessel disease (CSVD) can be caused by both variants in nuclear DNA and mitochondrial DNA (mtDNA). Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is known to have a phenotype similar to Cerebral Autosomal Dominant Arteriopathy with Sub-cortical Infarcts and Leukoencephalopathy (CADASIL), and can be caused by variants in the mitochondrial genome and in several nuclear-encoded mitochondrial protein (NEMP) genes. The aim of this study was to screen for variants in the mitochondrial genome and NEMP genes in aNOTCH3-negative CADASIL cohort, to identify a...
Source: Molecular Neurobiology - August 23, 2022 Category: Neurology Source Type: research

Astrocyte-Derived TNF- α-Activated Platelets Promote Cerebral Ischemia/Reperfusion Injury by Regulating the RIP1/RIP3/AKT Signaling Pathway
In this study, we created an I/R mouse model via middle cerebral artery occlusion and reperfusion (MCAO/R) and analyzed the transcriptomic profiles of the ipsilateral and contralateral cortices using RNA-seq. We found that cerebral I/R injury induced platelet invasion and accumulation in the cerebral cortex by stimulating TNF- α secretion from activated astrocytes in the ischemic region, while TNF-α expression enhanced platelet reactivity through the RIP1/RIP3/AKT pathway. Furthermore, the inoculation of TNF-α-stimulated platelets aggravated I/R injury in mice, whereas the administration of anti-TNF-α antibodies at th ...
Source: Molecular Neurobiology - August 25, 2022 Category: Neurology Source Type: research

Transcranial Direct-Current Stimulation Regulates MCT1-PPA-PTEN-LONP1 Signaling to Confer Neuroprotection After Rat Cerebral Ischemia –Reperfusion Injury
This study supports a potential application of tDCS in ischemic stroke.
Source: Molecular Neurobiology - October 29, 2022 Category: Neurology Source Type: research

Amorfrutin B Protects Mouse Brain Neurons from Hypoxia/Ischemia by Inhibiting Apoptosis and Autophagy Processes Through Gene Methylation- and miRNA-Dependent Regulation
Abstract Amorfrutin B is a selective modulator of the PPAR γ receptor, which has recently been identified as an effective neuroprotective compound that protects brain neurons from hypoxic and ischemic damage. Our study demonstrated for the first time that a 6-h delayed post-treatment with amorfrutin B prevented hypoxia/ischemia-induced neuronal apoptosis i n terms of the loss of mitochondrial membrane potential, heterochromatin foci formation, and expression of specific genes and proteins. The expression of all studied apoptosis-related factors was decreased in response to amorfrutin B, both during hypoxia and ischemia,...
Source: Molecular Neurobiology - January 19, 2023 Category: Neurology Source Type: research

Toll-Like Receptor 4 Signaling in Neurons Mediates Cerebral Ischemia/Reperfusion Injury
AbstractIn microglia, Toll-like receptor 4 (TLR4) is well known to contribute to neuroinflammatory responses following brain ischemia. TLR4 is also expressed in neurons and can mediate the conduction of calcium (Ca2+) influx, but the mechanistic link between neuronal TLR4 signaling and brain ischemic injury is still poorly understood. Here, primary neuronal cell cultures from TLR4 knockout mice and mice with conditional TLR4 knockout in glutamatergic neurons (TLR4cKO) were used to establish ischemic models in vitro and in vivo, respectively. We found that deleting TLR4 would reduce the neuronal death and intracellular Ca2+...
Source: Molecular Neurobiology - January 19, 2023 Category: Neurology Source Type: research

Role of tRNA-Derived Fragments in Neurological Disorders: a Review
AbstracttRFs are small tRNA derived fragments that are emerging as novel therapeutic targets and regulatory molecules in the pathophysiology of various neurological disorders. These are derived from precursor or mature tRNA, forming different subtypes that have been reported to be involved in neurological disorders like stroke, Alzheimer ’s, epilepsy, Parkinson’s, MELAS, autism, and Huntington’s disorder. tRFs were earlier believed to be random degradation debris of tRNAs. The significant variation in the expression level of tRFs in disease conditions indicates their salient role as key players in regulation of these...
Source: Molecular Neurobiology - January 19, 2023 Category: Neurology Source Type: research