Can Soluble Immune Checkpoint Molecules on Exosomes Mediate Inflammation?

AbstractImmune checkpoints (ICPs) are major co-signaling pathways that trigger effector functions in immune cells, with isoforms that are either membrane bound, engaging in direct cell to cell activation locally, or soluble, acting at distant sites by circulating freely or potentially via extracellular vesicles (EVs). Exosomes are small EVs secreted by a variety of cells carrying various proteins and nucleic acids. They are distributed extensively through biological fluids and have major impacts on infectious diseases, cancer, and neuroinflammation. Similarly, ICPs play key roles in a variety of disease conditions and have been extensively utilized as a prognostic tool for various cancers. Herein, we explored if the association between exosomes and ICPs could be a significant contributor of inflammation, particularly in the setting of cancer, neuroinflammation and viral infections, wherein the up regulation in both exosomal proteins and ICPs correlate with immunosuppressive effects. The detailed literature review of existing data highlights the significance and complexity of these two important pathways in mediating cancer and potentiating neuroinflammation via modulating overall immune response.Graphical AbstractCells increasingly secret exosomes in response to intracellular signals from invading pathogens or cancerous transformations. These exosomes can carry a variety of cargo including proteins, nucleic acids, cytokines, and receptors/ligands that have functional conseque...
Source: Journal of NeuroImmune Pharmacology - Category: Drugs & Pharmacology Source Type: research