Rapid Assessment of Acute Ischemic Stroke by Computed Tomography Using Deep Convolutional Neural Networks

This study proposes an automatic identification scheme for acute ischemic stroke using deep convolutional neural networks (DCNNs) based on non-contrast computed tomographic (NCCT) images. Our image database for the classification model was composed of 1254 grayscale NCCT images from 96 patients (573 images) with acute ischemic stroke and 121 normal controls (681 images). According to the consensus of critical stroke findings by two neuroradiologists, a gold standard was established and used to train the proposed DCNN using machine-generated image features. Including the earliest DCNN, AlexNet, the popular Inception-v3, and ResNet-101 were proposed. To train the limited data size, transfer learning with ImageNet parameters was also used. The established models were evaluated by tenfold cross-validation and tested on an independent dataset containing 50 patients with acute ischemic stroke (108 images) and 58 normal controls (117 images) from another institution. AlexNet without pretrained parameters achieved an accuracy of 97.12%, a sensitivity of 98.11%, a specificity of 96.08%, and an area under the receiver operating characteristic curve (AUC) of 0.9927. Using transfer learning, transferred AlexNet, transferred Inception-v3, and transferred ResNet-101 achieved accuracies between 90.49 and 95.49%. Tested with a dataset from another institution, AlexNet showed an accuracy of 60.89%, a sensitivity of 18.52%, and a specificity of 100%. Transferred AlexNet, Inception-v3, and ResN...
Source: Journal of Digital Imaging - Category: Radiology Source Type: research