Roflumilast prevents ischemic stroke-induced neuronal damage by restricting GSK3 β-mediated oxidative stress and IRE1α/TRAF2/JNK pathway.

In this study, we investigated the effect and mechanism of Roflu against ischemic stroke using in vitro oxygen-glucose deprivation reperfusion (OGD/R) and in vivo rat middle cerebral artery occlusion (MCAO) models. We demonstrated that Roflu significantly reduced the apoptosis of HT-22 cells exposed to OGD/R, enhanced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf-2), and reduced oxidative stress. Treatment with Roflu increased the phosphorylation of protein kinase B (Akt) and glycogen synthase kinase 3β (GSK3β) but decreased the level of phosphorylated inositol requiring enzyme 1α (IRE1α). Interestingly, constitutively active GSK3β (S9A) mutation abolished the effects of Roflu on oxidative stress and IRE1α phosphorylation. Moreover, Roflu decreased the binding of IRE1α to tumor necrosis factor receptor-associated factor 2 (TRAF2) and attenuated the phosphorylation of c-Jun N-terminal kinase (JNK). We also found that PDE4B knockdown reduced the phosphorylation of both IRE1α and JNK, while overexpression of PDE4B antagonized the role of PDE4B knockdown on the activation of IRE1α and JNK. Besides, the inhibition of PDE4 by Roflu produced similar effects in primary cultured neurons. Finally, Roflu ameliorated MCAO-induced cerebral injury by decreasing infarct volume, restoring neurological score, and reducing the phosphorylation of IRE1α and JNK. Collectively, these data suggest that Roflu protects neurons from cerebral ischemia reperfusi...
Source: Free Radical Biology and Medicine - Category: Biology Authors: Tags: Free Radic Biol Med Source Type: research