Exogenous salicylic acid regulates cell wall polysaccharides synthesis and pectin methylation to reduce Cd accumulation of tomato.

In this study, all tomato seedlings were pre-treated with 100 μM SA for 3 d, then seedlings were used to analyze the role of SA in regulating plant cell wall resistance to Cd stress. The results showed that exogenous SA significantly reduced Cd accumulation in tomato plants and changed Cd distribution. By analyzing the cell wall composition, it was found cellulose, hemicellulose, pectin, and lignin were induced by SA. Interestingly, the content of Cd in pectin decreased by SA pretreatment, however it was increased in cellulose. Gene expression analysis showed SA up-regulated the expression level of lignin and cellulose synthase genes, but down-regulated the expression of pectin methylesterase related genes. In addition, SA down-regulated the activity of pectin methylesterase. These results indicated that SA pretreatment up-regulated cell wall polysaccharide synthesis and related gene expression to thicken the cell wall and block Cd from passing through. Furthermore, SA decreased pectin methylesterase activity and content to reduce cell wall Cd accumulation and change the Cd partition ratio. PMID: 33254408 [PubMed - in process]
Source: Ecotoxicology and Environmental Safety - Category: Environmental Health Authors: Tags: Ecotoxicol Environ Saf Source Type: research