Autotaxin stimulates LPA2 receptor in macrophages and exacerbates dextran sulfate sodium-induced acute colitis

AbstractAutotaxin (ATX) is a secreted enzyme that hydrolyzes lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA) and choline. ATX has been implicated in multiple chronic inflammatory diseases, but little is known about its role in the development of inflammatory bowel disease (IBD). Here, we investigated how ATX contributed to intestinal inflammation during colitis. We found that ATX expression levels were upregulated in the intestines of ulcerative colitis (UC) patients in acute state as well as in the intestines of dextran sulfate sodium (DSS)-induced colitis mice, which is likely due to increased infiltration of inflammatory cells including macrophages. Intriguingly, the inhibition of ATX activity led to reduced production of inflammatory cytokines, as well as attenuated colitis. These findings suggest that ATX may display strong pro-inflammatory properties. Supporting this, treatment with recombinant mouse ATX (rmATX) increased the production of inflammatory cytokines and enzymes in mouse macrophage cell line RAW264.7 and bone marrow-derived macrophages (BMDM), whereas silencing ATX by siRNA reduced LPS-stimulated production of pro-inflammatory factors. Notably, we found that the levels of LPA2 (an LPA receptor) were dramatically upregulated in rmATX-treated RAW264.7 cells and DSS-treated mice. Gene silencing oflpa2 in RAW264.7 cells by siRNA led to reduced production of inflammatory cytokines. Moreover, adenovirus-mediated delivery oflpa2 short hairpin RNA into ...
Source: Journal of Molecular Medicine - Category: Molecular Biology Source Type: research