Human health risk estimation and predictive modeling of halogenated disinfection by- products (chloroform) in swimming pool waters: a case study of Dhanbad, Jharkhand, India

AbstractDisinfection is an important process to make the water free from harmful pathogenic substances, but sometimes it results in the formation of harmful by-products. Development of predictive models is required to define the concentration of THMs in pool water. Majority of studies reported inhalation to be the most significant THMs exposure route which is more likely to be dependent upon the concentration of THMs in pool water and in air. THMs concentration in the analyzed pool water samples and in air was found to be 197.18  ± 16.31 μg L−1 and 0.033  μg m3 –1, respectively. Statistical parameters such as high correlation coefficients, high R2 values, low standard error, and low mean square error of prediction indicated the validity of MLR based linear model over non-linear model. Therefore, linear model can be most suitably used to pre-assess and predict the THMs levels in swimming pool water. Risk estimation studies was conducted by using the united states environmental protection agency (USEPA) Swimmer Exposure Assessment Model (SWIMODEL). The lifetime time cancer risk values related to chloroform exceeded 10−6 for both the sub-population. Inhalation exposure leads to maximum risk and contributed up to 99% to total cancer risk. Risk due to other exposure pathways like accidental ingestion and skin contact was found to be negligible and insignificant. Monte Carlo simulation results revealed that the simulated THMs risk values for the studied exposure pa...
Source: Journal of Environmental Health Science and Engineering - Category: Environmental Health Source Type: research