Bacterial community evolution along full-scale municipal wastewater treatment processes.

This study investigated the changes in the bacterial community over the course of treatment by a WWTP. Illumina MiSeq high-throughput sequencing was performed to characterize the bacterial communities in the WWTP. This study found that potential pathogens in the WWTP, especially the genera Arcobacter and Acinetobacter, were greatly reduced. In addition, high chemical oxygen demand levels provided excessive growth substrates for the genera Hyphomicrobium and Rhodoplanes, the abundance of which could exceed autotrophic bacteria, increasing the ammonium removal. According to the network analysis, the bacterial assemblage was not randomly arranged in the WWTP, and various defined processes led to higher intra-phylum (such as Proteobacteria) coexistence than expected. Moreover, the metabolic functions of bacterial communities significantly improved in the WWTP compared with the influent. Together, the data in this study emphasize the need to understand the bacterial community of WWTPs better. When analyzing the risks of WWTP drainage systems to the environment and human health, these data should be considered. PMID: 33095191 [PubMed - as supplied by publisher]
Source: Journal of Water and Health - Category: Environmental Health Tags: J Water Health Source Type: research