Sensors, Vol. 20, Pages 6059: Detection and Quantification of Tomato Paste Adulteration Using Conventional and Rapid Analytical Methods

Sensors, Vol. 20, Pages 6059: Detection and Quantification of Tomato Paste Adulteration Using Conventional and Rapid Analytical Methods Sensors doi: 10.3390/s20216059 Authors: Vitalis Zaukuu Bodor Aouadi Hitka Kaszab Zsom-Muha Gillay Kovacs Tomato, and its concentrate are important food ingredients with outstanding gastronomic and industrial importance due to their unique organoleptic, dietary, and compositional properties. Various forms of food adulteration are often suspected in the different tomato-based products causing major economic and sometimes even health problems for the farmers, food industry and consumers. Near infrared (NIR) spectroscopy and electronic tongue (e-tongue) have been lauded as advanced, high sensitivity techniques for quality control. The aim of the present research was to detect and predict relatively low concentration of adulterants, such as paprika seed and corn starch (0.5, 1, 2, 5, 10%), sucrose and salt (0.5, 1, 2, 5%), in tomato paste using conventional (soluble solid content, consistency) and advanced analytical techniques (NIR spectroscopy, e-tongue). The results obtained with the conventional methods were analyzed with univariate statistics (ANOVA), while the data obtained with advanced analytical methods were analyzed with multivariate methods (Principal component analysis (PCA), linear discriminant analysis (LDA), partial least squares regression (PLSR). The conventional methods were only able to detect ad...
Source: Sensors - Category: Biotechnology Authors: Tags: Article Source Type: research