Model-Based Sensitivity Analysis of EMG Clustering Index With Respect to Motor Unit Properties: Investigating Post-Stroke FDI Muscle

The objective of this study is to explore the diagnostic decision and sensitivity of the surface electromyogram (EMG) clustering index (CI) with respect to post-stroke motor unit (MU) alterations through a simulation approach by the existing motor neuron pool model and surface EMG model. In the simulation analysis, three patterns of diagnostic decisions were presented in 24 groups representing eight types in three degrees of MU alterations. Specifically, the CI decision exhibited an abnormally increased pattern for five types, an abnormally decreased pattern for two types, and an invariant pattern for one type. Furthermore, the CI diagnostic decision was found to be highly sensitive to three types because a 50% degree of alteration in these types resulted in a distinct deviation of 2.5 in the CI Z-score. The mixed CI patterns were confirmed in experimental data collected from the paretic muscles of 14 subjects with stroke, as compared to the healthy muscles of 10 control subjects. Given the simulation results as a guideline, the CI diagnostic decision could be interpreted from general neural or muscular changes into specific MU changes (in eight types). This can further promote clinical applications of the convenient surface EMG tool in examining and monitoring paretic muscle changes toward customized stroke rehabilitation.
Source: IEE Transactions on Neural Systems and Rehabilitation Engineering - Category: Neuroscience Source Type: research