Deep Learning-Based Development of Personalized Human Head Model With Non-Uniform Conductivity for Brain Stimulation

This study proposes a novel approach for fast and automatic estimation of the electric conductivity in the human head for volume conductor models without anatomical segmentation. A convolutional neural network is designed to estimate personalized electrical conductivity values based on anatomical information obtained from T1- and T2-weighted MRI scans. This approach can avoid the time-consuming process of tissue segmentation and maximize the advantages of position-dependent conductivity assignment based on the water content values estimated from MRI intensity values. The computational results of the proposed approach provide similar but smoother electric field distributions of the brain than that provided by conventional approaches.
Source: IEE Transactions on Medical Imaging - Category: Biomedical Engineering Source Type: research