Erythrocyte adaptive metabolic reprogramming under physiological and pathological hypoxia

Purpose of review The erythrocyte is the most abundant cell type in our body, acting as both a carrier/deliverer and sensor of oxygen (O2). Erythrocyte O2 delivery capacity is finely regulated by sophisticated metabolic control. In recent years, unbiased and robust human metabolomics screening and mouse genetic studies have advanced erythroid research revealing the differential role of erythrocyte hypoxic metabolic reprogramming in normal individuals at high altitudes and patients facing hypoxia, such as sickle cell disease (SCD) and chronic kidney disease (CKD). Here we summarize recent progress and highlight potential therapeutic possibilities. Recent findings Initial studies showed that elevated soluble CD73 (sCD73, converts AMP to adenosine) results in increased circulating adenosine that activates the A2B adenosine receptor (ADORA2B). Signaling through this axis is co-operatively strengthened by erythrocyte-specific synthesis of sphingosine-1-phosphate (S1P). Ultimately, these mechanisms promote the generation of 2,3-bisphosphoglycerate (2,3-BPG), an erythrocyte-specific allosteric modulator that decreases haemoglobin--O2-binding affinity, and thus, induces deoxygenated sickle Hb (deoxyHbS), deoxyHbS polymerization, sickling, chronic inflammation and tissue damage in SCD. Similar to SCD, plasma adenosine and erythrocyte S1P are elevated in humans ascending to high altitude. At high altitude, these two metabolites are beneficial to induce erythrocyte metabolic reprog...
Source: Current Opinion in Hematology - Category: Hematology Tags: ERYTHROID SYSTEM AND ITS DISEASES: Edited by Narla Mohandas and Sandrina Kinet Source Type: research