Tragacanth-mediate synthesis of NiO nanosheets for cytotoxicity and photocatalytic degradation of organic dyes.

In this study, NiO nanosheets have been manufactured using a co-precipitation approach that involved the usage of nickel nitrate (Ni (NO3)2.6H2O) as the raw material and tragacanth in the role of a stabilizing agent. NiO nanosheets have been fabricated through the reduction of nickel nitrate solution that had been obtained by the application of aqueous extract of tragacanth, which is capable of functioning as a reducing and stabilizing agent. In the following, the physical and chemical properties of tragacanth-stabilized NiO nanosheets have been identified via FESEM, EDS, XRD, UV-Vis, and FT-IR techniques. According to the XRD pattern, these particular nanosheets have contained a cubic structure and group space Fm3m, along with the average size of about 18 to 43 nm that had been in agreement with the FESEM measurements. In addition, we have evaluated the photocatalytic activity of tragacanth-stabilized NiO nanosheets on the degradations of methylene blue (MB) and methyl orange (MO) dyes. The performed photocatalytic assessment has displayed that the nanosheets can degrade 82% of MO within 210 min and 60% of MB in 300 min. The cytotoxicity of tragacanth-stabilized NiO nanosheets on human Glioblastoma cancer (U87MG) cell lines has been investigated via the MTT assay, while it has been detected in the obtained results that the inhibitory concentration (IC50) had been 125 µg/mL. PMID: 32144597 [PubMed - as supplied by publisher]
Source: Bioprocess and Biosystems Engineering - Category: Biomedical Engineering Authors: Tags: Bioprocess Biosyst Eng Source Type: research