PERK-eIF2 α-ATF4 signaling contributes to osteogenic differentiation of periodontal ligament stem cells

AbstractProtein kinase-like endoplasmic reticulum kinase (PERK) is a type I transmembrane protein located in the endoplasmic reticulum (ER). The PERK-eukaryotic initiation factor 2 α (eIF2α)-activating transcription factor 4 (ATF4) pathway has been proved to be involved in osteoblast differentiation, but the involvement of the PERK-eIF2α-ATF4 signaling pathway in osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) has remained unclear. Therefore, the aim of this study was to explore the role of PERK in osteogenic differentiation of hPDLSCs and to assess whether PERK-eIF2α-ATF4 contributes to the process of osteogenic differentiation in hPDLSCs. In our study, we constructed PERK-overexpressed and PERK-silenced hPDLSCs by lentiviral transduct ion. Furthermore, lentivirus-transfected cells were induced to differentiate into osteoblast cells for different days. Alkaline phosphatase (ALP) activity and Alizarin Red staining were used to evaluate the mineralization capacity, and the expression levels of related genes-ATF4, ALP, bone sialoprot ein, runt-related transcription factor 2 (Runx2), and osteocalcin were measured to evaluate the osteogenic differentiation of hPDLSCs. The results showed that over-expression of PERK greatly increased ALP activity and the expression levels of related osteogenic genes, which displayed the strongest o steogenesis capacity. However, suppression of PERK caused decreased ALP activity and the weakest osteogenesis capaci...
Source: Journal of Molecular Histology - Category: Laboratory Medicine Source Type: research