Neutral processes dominate microbial community assembly in Atlantic salmon, Salmo salar.

In this study, the intestinal microbiota of Atlantic salmon, Salmo salar, sampled from farmed and wild environments was first characterised using 16s rDNA MiSeq sequencing analysis. We used neutral community models to determine the balance of stochastic and deterministic processes that underpin microbial community assembly and transfer across lifecycle stage and between gut compartments. Across gut compartments in farmed fish, neutral models suggest that most microbes are transient with no evidence of adaptation to their environment. In wild fish, we find declining taxonomic and functional microbial community richness as fish mature through different lifecycle stages. Alongside neutral community models applied to wild fish, we suggest declining richness demonstrates an increasing role for the host in filtering microbial communities that is correlated with age. We find a limited subset of gut microflora adapted to the farmed and wild host environment among which Mycoplasma sp. are prominent. Our study reveals the ecological drivers underpinning community assembly in both farmed and wild Atlantic salmon and underlines the importance of understanding the role of stochastic processes such as random drift and small migration rates in microbial community assembly, before considering any functional role of the gut microbes encountered.ImportanceA growing number of studies have examined variation in the microbiome to determine the role in modulating host health, physiology and ecolog...
Source: Applied and Environmental Microbiology - Category: Microbiology Authors: Tags: Appl Environ Microbiol Source Type: research