[Research Articles] Mapping global variation in dengue transmission intensity

Intervention planning for dengue requires reliable estimates of dengue transmission intensity. However, current maps of dengue risk provide estimates of disease burden or the boundaries of endemicity rather than transmission intensity. We therefore developed a global high-resolution map of dengue transmission intensity by fitting environmentally driven geospatial models to geolocated force of infection estimates derived from cross-sectional serological surveys and routine case surveillance data. We assessed the impact of interventions on dengue transmission and disease using Wolbachia-infected mosquitoes and the Sanofi-Pasteur vaccine as specific examples. We predicted high transmission intensity in all continents straddling the tropics, with hot spots in South America (Colombia, Venezuela, and Brazil), Africa (western and central African countries), and Southeast Asia (Thailand, Indonesia, and the Philippines). We estimated that 105 [95% confidence interval (CI), 95 to 114] million dengue infections occur each year with 51 (95% CI, 32 to 66) million febrile disease cases. Our analysis suggests that transmission-blocking interventions such as Wolbachia, even at intermediate efficacy (50% transmission reduction), might reduce global annual disease incidence by up to 90%. The Sanofi-Pasteur vaccine, targeting only seropositive recipients, might reduce global annual disease incidence by 20 to 30%, with the greatest impact in high-transmission settings. The transmission intensity...
Source: Science Translational Medicine - Category: Biomedical Science Authors: Tags: Research Articles Source Type: research