A Role for the Locus Coeruleus in Hippocampal CA1 Place Cell Reorganization during Spatial Reward Learning

Publication date: Available online 21 January 2020Source: NeuronAuthor(s): Alexandra Mansell Kaufman, Tristan Geiller, Attila LosonczySummaryDuring spatial learning, hippocampal (HPC) place maps reorganize to represent new goal locations, but little is known about the circuit mechanisms facilitating these changes. Here, we examined how neuromodulation via locus coeruleus (LC) projections to HPC area CA1 (LC-CA1) regulates the overrepresentation of CA1 place cells near rewarded locations. Using two-photon calcium imaging, we monitored the activity of LC-CA1 fibers in the mouse dorsal HPC. We find that the LC-CA1 projection signals the translocation of a reward, predicting behavioral performance on a goal-oriented spatial learning task. An optogenetic stimulation mimicking this LC-CA1 activity induces place cell reorganization around a familiar reward, while its inhibition decreases the degree of overrepresentation around a translocated reward. Our results show that LC acts in conjunction with other factors to induce goal-directed reorganization of HPC representations and provide a better understanding of the role of neuromodulatory actions on HPC place map plasticity.
Source: Neuron - Category: Neuroscience Source Type: research