Regulation of spermatogenesis and reproductive capacity by Igf3 in tilapia.

Regulation of spermatogenesis and reproductive capacity by Igf3 in tilapia. Cell Mol Life Sci. 2020 Jan 18;: Authors: Li M, Liu X, Dai S, Xiao H, Qi S, Li Y, Zheng Q, Jie M, Cheng CHK, Wang D Abstract A novel insulin-like growth factor (igf3), which is exclusively expressed in the gonads, has been widely identified in fish species. Recent studies have indicated that Igf3 regulates spermatogonia proliferation and differentiation in zebrafish; however, detailed information on the role of this Igf needs further in vivo investigation. Here, using Nile tilapia (Oreochromis niloticus) as an animal model, we report that igf3 is required for spermatogenesis and reproduction. Knockout of igf3 by CRISPR/Cas9 severely inhibited spermatogonial proliferation and differentiation at 90 days after hatching, the time critical for meiosis initiation, and resulted in less spermatocytes in the mutants. Although spermatogenesis continued to occur later, more spermatocytes and less spermatids were observed in the igf3-/- testes when compared with wild type of testes at adults, indicating that Igf3 regulates spermatocyte to spermatid transition. Importantly, a significantly increased occurrence of apoptosis in spermatids was observed after loss of Igf3. Therefore, igf3-/- males were subfertile with drastically reduced semen volume and sperm count. Conversely, the overexpression of Igf3 in XY tilapia enhanced spermatogenesis leading to more spermatids and ...
Source: Cellular and Molecular Life Sciences : CMLS - Category: Cytology Authors: Tags: Cell Mol Life Sci Source Type: research