Deep brain stimulation in the caudal zona incerta modulates the sensorimotor cerebello-cerebral circuit in essential tremor

Publication date: Available online 31 December 2019Source: NeuroImageAuthor(s): Amar Awad, Patric Blomstedt, Göran Westling, Johan ErikssonAbstractEssential tremor is effectively treated with deep brain stimulation (DBS), but the neural mechanisms underlying the treatment effect are poorly understood. Essential tremor is driven by a dysfunctional cerebello-thalamo-cerebral circuit resulting in pathological tremor oscillations. DBS is hypothesised to interfere with these oscillations at the stimulated target level, but it is unknown whether the stimulation modulates the activity of the cerebello-thalamo-cerebral circuit during different task states (with and without tremor) in awake essential tremor patients. To address this issue, we used functional MRI in 16 essential tremor patients chronically implanted with DBS in the caudal zona incerta. During scanning, the patients performed unilateral tremor-inducing postural holding and pointing tasks as well as rest, with contralateral stimulation turned On and Off.We show that DBS exerts both task-dependent as well as task-independent modulation of the sensorimotor cerebello-cerebral regions (p ≤ 0.05, FWE cluster-corrected for multiple comparisons). Task-dependent modulation (DBS × task interaction) resulted in two patterns of stimulation effects. Firstly, activity decreases (blood oxygen level-dependent signal) during tremor-inducing postural holding in the primary sensorimotor cortex and cerebellar lobule VIII, and a...
Source: NeuroImage - Category: Neuroscience Source Type: research