Aldehyde dehydrogenase-2 acts as a potential genetic target for renal fibrosis

Publication date: Available online 31 October 2019Source: Life SciencesAuthor(s): Simin Tang, Teng Huang, Huan Jing, Zhenxing Huang, Hongtao Chen, Youling Fan, Jiying Zhong, Jun ZhouAbstractObstructive renal injury and drug-induced nephrotoxicity are the two most common causes of renal fibrosis diseases. However, whether these two different pathogeny induced same pathological outcomes contain common genetic targets or signaling pathway, the current research has not paid great attention. GSE121190 and GSE35257 were downloaded from the Gene Expression Omnibus (GEO) database. While GSE121190 represents a differential expression profile in kidney of mice with unilateral ureteral obstruction (UUO) model, GSE35257 represents cisplatin nephrotoxicity model. By using GEO2R, 965 differential expression genes (DEGs) in GSE121190 and 930 DEGs in GSE35257 were identified. 43 co-DEGs were shared and were extracted for protein-protein interaction (PPI) analysis. Subsequently, three shared pathways including glycolysis/gluconeogenesis, fatty acid degradation and pathways in cancer were involved in two models with Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. We reconfirmed that these three pathways have relatively high scores by using Gene Set Enrichment Analysis (GSEA) software. Additionally, further bioinformatic analysis showed that Aldehyde dehydrogenase-2 (Aldh2) involved in the progression of renal fibrosis by mediating glycolysis pathway Then real-time PCR and western blot...
Source: Life Sciences - Category: Biology Source Type: research