Effects of progesterone on glucose uptake in neurons of Alzheimer's disease animals and cell models

Publication date: Available online 21 October 2019Source: Life SciencesAuthor(s): Hang Wu, Zhi-gang Wu, Wen-jing Shi, Hui Gao, Hong-hai Wu, Fang Bian, Peng-peng Jia, Yan-ning HouAbstractAims: Alzheimer's disease (AD) is closely related to abnormal glucose metabolism in the central nervous system. Progesterone has been shown to have obvious neuroprotective effects in the pathogenesis of AD, but the specific mechanism has not been fully elucidated. Therefore, the purpose of this study was to investigate the effect of progesterone on the glucose metabolism of neurons in amyloid precursor protein (APP)/presenilin 1 (PS1) mice and Aβ-induced AD cell model.Materials and methods:APP/PS1 mice were treated with 40 mg/kg progesterone for 40 days and primary cultured cortical neurons were treated with 1 μM progesterone for 48 h.Then behavior tests,2-NBDG glucose uptake tests and the protein levels of glucose transporter 3 (GLUT3), GLUT4, cAMP-response element binding protein (CREB) and proliferator-activated receptor γ (PPARγ) were examined.Key findings:Progesterone increased the expression levels of GLUT3 and GLUT4 in the cortex of APP/PS1 mice, accompanied by an improvement in learning and memory. Progesterone increased the levels of CREB and PPARγ in the cerebral cortex of APP/PS1 mice. In vitro, progesterone increased glucose uptake in primary cultured cortical neurons, this effect was blocked by the progesterone receptor membrane component 1 (PGRMC1)-specific blocker AG2...
Source: Life Sciences - Category: Biology Source Type: research