Transcriptome sequencing of Eospalax fontanierii to determine hypoxia regulation of cardiac fibrinogen.

Transcriptome sequencing of Eospalax fontanierii to determine hypoxia regulation of cardiac fibrinogen. Mol Biol Rep. 2019 Sep 24;: Authors: Xu L, Hao Z, Lin J, Zhao Q, Zhang B, Li G, He J, Li J Abstract With the increase in blood viscosity, the blood circulation resistance will increase when animals are in hypoxia. However, these phenomenons do not appear in hypoxic-adapted animals. Eospalax fontanierii is a subterranean rodent and is an ideal species for research in hypoxia adaptation. Eighteen healthy adult E. fontanierii individuals were equally divided into three groups that were exposed to 21% O2 for 1 week, 10.5% O2 for 44 h, and 6.5% O2 for 6 h, and then, the hearts were collected for transcriptome sequencing. After differentially expressed analysis, fibrinogen genes were selected for qPCR and Western blot verification. Eighteen healthy adult Sprague-Dawley rats (SD rats) were treated with the same oxygen concentrations, and their hearts were simultaneously subjected to qPCR. The quantitative real-time PCR and Western blot results were completely opposite to those of the rats. E. fontanierii fibrinogen mRNA was significantly downregulated when expressed under the conditions of 10.5% and 6.5% O2 compared with 21% O2. Correspondingly, fibrinogen mRNA in E. fontanierii was expressed at lower levels than SD rats in 10.5% and 6.5% O2. After tail-cutting experiment, the results showed that the coagulation rate of E. fontanierii ...
Source: Molecular Biology Reports - Category: Molecular Biology Authors: Tags: Mol Biol Rep Source Type: research