Stretch-Induced Deformation as a Model to Study Dopaminergic Dysfunction in Traumatic Brain Injury.

In this study, we evaluated the effects of in vitro simulated TBI on human dopaminergic neurons. To simulate TBI, neurons were subjected to 0%, 5%, 10%, 15%, 25% and 50% deformation. 24 h after injury, cell viability and apoptosis were determined by lactate dehydrogenase (LDH) release and DNA fragmentation, as well as ethidium homodimer and caspase 3/7 staining. Dopamine (DA) levels were determined by ELISA. Levels of tyrosine hydroxylase (TH) and DA transporter (DAT) were determined by western blot. Only 50% stretch increased LDH release and ethidium homodimer staining, suggesting the induction of necrosis. On the contrary, 25% and 50% stretch increased DNA fragmentation while 15%, 25% and 50% increased caspase 3/7 staining, suggesting that moderate and severe TBI promote apoptosis. Levels of intracellular DA decreased in a stretch-dependent manner with 15%, 25% and 50% stretch, which were related with a decrease in TH expression. Extracellular DA levels increased only at 50%. Levels of DAT remained unchanged regardless of treatment. These data support the use of stretch as a model to simulate TBI in vitro in human dopaminergic neurons, replicating the acute effects of TBI in the dopaminergic system. PMID: 31529335 [PubMed - as supplied by publisher]
Source: Neurochemical Research - Category: Neuroscience Authors: Tags: Neurochem Res Source Type: research