R-loop-dependent replication and genomic instability in bacteria.

R-loop-dependent replication and genomic instability in bacteria. DNA Repair (Amst). 2019 Aug 21;:102693 Authors: Drolet M, Brochu J Abstract DNA replication, the faithful copying of genetic material, must be tightly regulated to produce daughter cells with intact copies of the chromosome(s). This regulated replication is initiated by binding of specific proteins at replication origins, such as DnaA to oriC in bacteria. However, unregulated replication can sometimes be initiated at other sites, which can threaten genomic stability. One of the first systems of unregulated replication to be described is the one activated in Escherichia coli mutants lacking RNase HI (rnhA). In fact, rnhA mutants can replicate their chromosomes in a DnaA- and oriC-independent process. Because this replication occurs in cells lacking RNase HI, it is proposed that RNA from R-loops is used as a DNA polymerase primer. Replication from R-loops has recently attracted increased attention due to the advent of DNA:RNA hybrid immunoprecipitation coupled with high-throughput DNA sequencing that revealed the high prevalence of R-loop formation in many organisms, and the demonstration that R-loops can severely threaten genomic stability. Although R-loops have been linked to genomic instability mostly via replication stress, evidence of their toxic effects via unregulated replication has also been presented. Replication from R-loops may also beneficially trigger stres...
Source: DNA Repair - Category: Genetics & Stem Cells Authors: Tags: DNA Repair (Amst) Source Type: research