RSL3 induced autophagic death in glioma cells via causing glycolysis dysfunction.

In this study, we found RSL3 inhibited the viabilities of glioma cells and induced glioma cell death in a dose-dependent manner. In vitro studies revealed that RSL3-induced cell death was accompanied with the changes of autophagy-associated protein levels and was alleviated by pretreatment of 3-Methyladenine, bafilomycin A1 and knockdown of ATG5 with siRNA. The ATP and pyruvate content as well as the protein levels of HKII, PFKP, PKM2 were decreased in cells treated by RSL3, indicating that RSL3 induced glycolysis dysfunction in glioma cells. Moreover, supplement of exterior sodium pyruvate, which was a final product of glycolysis, not only inhibited the changes of autophagy-associated protein levels caused by RSL3, but also prevented RSL3-induced cell death. In vivo data suggested that the inhibitory effect of RSL3 on the growth of glioma cells was associated with glycolysis dysfunction and autophagy activation. Taken together, RSL3 induced autophagic cell death in glioma cells via causing glycolysis dysfunction. PMID: 31445705 [PubMed - as supplied by publisher]
Source: Biochemical and Biophysical Research communications - Category: Biochemistry Authors: Tags: Biochem Biophys Res Commun Source Type: research