Selection in two-sex stage-structured populations: Genetics, demography, and polymorphism.

Selection in two-sex stage-structured populations: Genetics, demography, and polymorphism. Theor Popul Biol. 2019 Aug 01;: Authors: de Vries C, Caswell H Abstract The outcome of natural selection depends on the demographic processes of birth, death, and development. Here, we derive conditions for protected polymorphism in a population characterized by age- or stage-dependent demography with two sexes. We do so using a novel two-sex matrix population model including basic Mendelian genetics (one locus, two alleles, random mating). Selection may operate on survival, growth, or fertility, any or all of which may differ between the sexes. The model can therefore incorporate genes with arbitrary pleiotropic and sex-specific effects. Conditions for protected polymorphism are expressed in terms of the eigenvalues of the linearization of the model at the homozygote boundary equilibria. We show that in the absence of sexual dimorphism, polymorphism requires heterozygote superiority in the genotypic population growth rate. In the presence of sexual dimorphism, however, heterozygote superiority is not required; an inferior heterozygote may invade, reducing the population growth rate and even leading to extinction (so-called evolutionary suicide). Our model makes no assumptions about separation of time scales between ecological and evolutionary processes, and can thus be used to project sex×stage×genotype dynamics of eco-evolutionary processes...
Source: Theoretical Population Biology - Category: Biology Authors: Tags: Theor Popul Biol Source Type: research