gH625 cell-penetrating peptide promotes the endosomal escape of nanovectorized siRNA in a triple negative breast cancer cell line.

gH625 cell-penetrating peptide promotes the endosomal escape of nanovectorized siRNA in a triple negative breast cancer cell line. Biomacromolecules. 2019 Jul 15;: Authors: Ben Djemaa S, Herve-Aubert K, Lajoie L, Falanga A, Galdiero S, Nedellec S, Soucé M, Munnier E, Chourpa I, David S, Allard-Vannier E Abstract The use of small interfering RNA (siRNA) to regulate oncogenes appears as a promising strategy in the context of cancer therapy, especially if they are vectorized by a smart delivery system. In the present study, we investigated the cellular trafficking of a siRNA nanovector (called CS-MSN) functionalized with the cell-penetrating peptides (CPP) gH625 in a triple negative breast cancer model. With complementary techniques, we showed that siRNA nanovectors were internalized by both clathrin- and caveolae-mediated endocytosis. The presence of gH625 at the surface of the siRNA nanovector did not modify the entry pathway of CS-MSN but it increased the amount of siRNA found inside the cells. Results suggested an escape of siRNA from endosomes which is enhanced by the presence of the peptide gH625, while nanoparticles continued their trafficking into lysosomes. The efficiency of CS-MSN to inhibit the GFP in MDA-MB-231 cells was 1.7-fold higher than the nanovectors without gH625. PMID: 31305991 [PubMed - as supplied by publisher]
Source: Biomacromolecules - Category: Biochemistry Authors: Tags: Biomacromolecules Source Type: research