Silicon nanocrystals: unfading silicon materials for optoelectronics

Publication date: October 2019Source: Materials Science and Engineering: R: Reports, Volume 138Author(s): Zhenyi Ni, Shu Zhou, Shuangyi Zhao, Wenbing Peng, Deren Yang, Xiaodong PiAbstractAs the most fundamental material for microelectronics, silicon (Si) has bourgeoned in the past more than half a century. However, given the indirect bandgap of Si, the use of Si in optoelectronics is relatively limited due to its mediocre optical absorption and rather poor optical emission. During many years of efforts for extending the use of Si in optoelectronics Si nanocrystals (NCs) that are one type of the most important Si nanostructures have attracted significant attention owing to their remarkable electronic and optical properties. Si NCs are actually crystalline Si nanoparticles, which may be called Si quantum dots if their size is smaller than ∼10 nm. With the manipulation of the size, surface and doping of Si NCs great tunability for the light emission from Si NCs with the quantum yield of more than 60% has been realized. Based on the efficient light emission from Si NCs high-performance Si-NC light-emitting devices have been demonstrated. In the meantime, the efficient light emission from Si NCs has also been utilized for synaptic simulations in neuromorphic computing and down-shifting in photovoltaics. Broadband optical absorption ranging from the ultraviolet to mid-infrared has been recently obtained for Si NCs mainly by taking advantage of doping. This has enabled the use of ...
Source: Materials Science and Engineering: R: Reports - Category: Materials Science Source Type: research