Selective Cox-2 inhibitor celecoxib induces epithelial-mesenchymal transition in human lung cancer cells via activating MEK-ERK signaling

In this study, we observed that celecoxib treatment at clinically relevant concentrations induced epithelial-mesenchymal transition (EMT) in NSCLC cells regardless of Cox-2 status, which, however, was not recapitulated using another Cox-2 inhibitor, etodolac. Celecoxib-stimulated EMT in turn promoted cell invasion and rendered cells resistant to chemotherapy. Further mechanistic investigation by disrupting the integrity of signaling pathways using specific inhibitors or RNA interference revealed that celecoxib-induced EMT in NSCLC cells is indispensable of transforming growth factor-β1/Smad signaling. Instead, the activated MEK/ERK/SNAIL1 signaling largely accounted for celecoxib-induced EMT. Taken together, our study reveals the diverse impacts of Cox-2 inhibitors on EMT in NSCLC cells independent of Cox-2 inhibition, where celecoxib treatment leads to metastasis and chemoresistance via EMT induction. These findings reveal the increased risks of cancer metastasis and chemoresistance by applying Cox-2 inhibitors, celecoxib in particular, in clinical trials of NSCLC treatment and urge intensive preclinical assessment before proceeding to clinical application.
Source: Carcinogenesis - Category: Cancer & Oncology Authors: Tags: Original Manuscript Source Type: research