Passaging of an influenza A(H1N1)pdm09 virus in a difluoro sialic acid inhibitor selects for a novel, but unfit I106M neuraminidase mutant

Publication date: Available online 22 June 2019Source: Antiviral ResearchAuthor(s): Jennifer L. McKimm-Breschkin, Susan Barrett, Charley McKenzie-Kludas, Julie McAuley, Victor A. Streltsov, Stephen G. WithersAbstractAn influenza A(H1N1)pdm09 and an influenza B virus were passaged in 3-fluoro(eq)-4-guanidino difluoro sialic acid (3Feq4Gu DFSA), an inhibitor of the influenza neuraminidase (NA) to determine whether resistant variants could be selected. 3Feq4Gu DFSA is a mechanism-based inhibitor, forming a covalent link to Y406 in the NA active site. Given its similarity to the natural substrate, sialic acid, we predicted resistant variants would be difficult to select. Yields of both viruses decreased with passaging, so that after 12 passages both viruses were only growing to low titers. Drug concentrations were decreased for another three passages. There was no difference in NA sensitivity in the MUNANA fluorescence-based assay, nor in plaque assays for the passaged virus stocks. All influenza B plaques were still wild type in all assays. There were isolated small diffuse plaques in the P15 pdm09 stock, which after purification had barely detectable NA or hemagglutinin (HA) activity. These had a novel non-active site I106M substitution in the NA gene, but unexpectedly no HA changes. The I106M may impact NA function through steric effects on the movement of the 150 and 430-loops. The I106M viruses had similar replication kinetics in MDCK cells as wild type viruses, but their ab...
Source: Antiviral Therapy - Category: Virology Source Type: research