Preparation of new magnetic zeolite nanocomposites for removal of strontium from polluted waters

Publication date: Available online 24 May 2019Source: Journal of Molecular LiquidsAuthor(s): Tamer Shubair, Osama Eljamal, Atsushi Tahara, Yuji Sugihara, Nobuhiro MatsunagaAbstractEfficient separation of strontium ions (Sr2+) from waters has become a critical technological requirement after the nuclear accident at Fukushima Daiichi power station. In the present investigation, new nanocomposites of zero valent iron nanoparticles–zeolite (nZVI–Z) and nano-Fe/Cu–zeolite (nFe/Cu–Z) were synthesized via a simple liquid-phase reduction approach and tested to determine their effectiveness in the sorptive removal of Sr2+ from aqueous solutions. The sorption of Sr2+ on both nanocomposites was studied in a batch sorption mode as a function of various environmental conditions such as initial Sr2+ concentration, contact time, pH, temperature, dosage of sorbent and competing cations (Na+, K+, Mg2+ and Ca2+). The results indicated that initial pH and temperature were significant for Sr2+ sorption on both nanocomposites. The Sr2+ sorption efficiency increases with the increase in nanocomposite dosage and decreases with the Sr+2 concentration. It was also found that although the sorption of Sr2+ was decreased by the presence of coexisting cations, the nanocomposites still exhibited high uptake capacity of Sr2+ ions. The Sr2+ sorption kinetics can be satisfactorily fitted by a pseudo-second-order kinetic model. The sorption isotherm data were well predicted using the Langmuir model. T...
Source: Journal of Molecular Liquids - Category: Molecular Biology Source Type: research