MicroRNA-320c inhibits development of osteoarthritis through downregulation of canonical Wnt signaling pathway

Publication date: Available online 8 May 2019Source: Life SciencesAuthor(s): Shu Hu, Guping Mao, Ziji Zhang, Peihui Wu, Xingzhao Wen, Weiming Liao, Zhiqi ZhangAbstractAimsOsteoarthritis (OA) is a leading cause of deformity in aging people. Emerging evidence suggests that microRNAs and Wnt signaling pathway are associated with its pathogenesis. We aimed to determine whether microRNA-320c inhibits the development of osteoarthritis by suppressing Wnt signaling pathway.Materials and methodsMiR-320c and β-catenin expression was assessed in human adipose derived stem cells (hADSCs) model of chondrogenesis and in normal and OA primary human chondrocytes. OA chondrocytes were transfected with miR-320c or its antisense inhibitor and β-catenin siRNA respectively. Direct interaction between miR-320c and β-catenin mRNA as well as activity of β-catenin/TCF complex were confirmed by luciferase reporter assay. Mmu-miR-320-3p agomir was intra-articularly injected in collagenase-induced OA mouse model. OA progression was evaluated histologically and immunohistochemically.Key findingsMiR-320c was decreased and β-catenin was increased in OA chondrocytes and late stage of hADSCs chondrogenesis. Overexpression of miR-320c and knockdown of β-catenin had similar effects that the cartilage-specific genes were elevated and hypertrophy-related genes were down-regulated in OA chondrocytes. Luciferase reporter assay confirm that miR-320c regulated the expression of β-catenin by directly targeting...
Source: Life Sciences - Category: Biology Source Type: research