Study on the detoxification mechanisms to 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato iron(III) chloride (FeTPPS), an efficient pro-oxidant of heme water-soluble analogue.

Study on the detoxification mechanisms to 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato iron(III) chloride (FeTPPS), an efficient pro-oxidant of heme water-soluble analogue. J Inorg Biochem. 2018 Sep 06;189:40-52 Authors: Zhang P, Ma L, Yang Z, Li H, Gao Z Abstract 5,10,15,20-Tetrakis (4-sulfonatophenyl) porphyrinato iron(III) chloride (FeTPPS) is a water-soluble analog of heme and widely employed as peroxynitrite scavenger in vivo. However, previous studies have showed that like heme, FeTPPS could also act as an effective pro-oxidant towards appreciable substrates in vitro in the presence of oxidant. The reason that FeTPPS did not show any pro-oxidative damage in previous studies when it was used as peroxynitrite decomposition catalyst in vivo, has not been studied. Herein, the effects of two main detoxification mechanisms of heme, i.e., serum albumin (SA) binding and heme oxygenase-1 (HO-1) induction, were examined on FeTPPS in vitro. Fluorescence quenching studies showed bovine serum albumin (BSA) could bind to FeTPPS with high affinity (Kb ~ 109 M-1). Molecular docking studies presented us the details of the binding site that is not a heme pocket. Furthermore, the intrinsic pro-oxidative activity of FeTPPS was found effectively inhibited by forming BSA-FeTPPS complex of low reactivity, which could be thought to protect against the potentially toxic effects of FeTPPS on blood components. In addition, this binding coul...
Source: Journal of Inorganic Biochemistry - Category: Biochemistry Authors: Tags: J Inorg Biochem Source Type: research