Intestinal bile acid sequestration improves glucose control by stimulating hepatic miR-182-5p in type 2 diabetes.

Intestinal bile acid sequestration improves glucose control by stimulating hepatic miR-182-5p in type 2 diabetes. Am J Physiol Gastrointest Liver Physiol. 2018 Aug 30;: Authors: Sedgeman LR, Beysen C, Allen RM, Ramirez Solano MA, Turner SM, Vickers KC Abstract Colesevelam is a bile acid sequestrant approved to treat both hyperlipidemia and type 2 diabetes, but the mechanism for its glucose lowering effects is not fully understood. The aim of this study was to investigate the role of hepatic microRNA's as regulators of metabolic disease and to investigate the link between the cholesterol and glucose lowering effects of colesevelam. To quantify the impact of colesevelam treatment in rodent models of diabetes, metabolic studies were performed in Zucker Diabetic Fatty (ZDF) rats and db/db mice. Colesevelam treatments significantly decreased plasma glucose levels and increased glycolysis in the absence of changes to insulin levels in ZDF rats and db/db mice. High-throughput sequencing and real-time PCR were used to quantify hepatic miRNA and mRNA changes, and the cholesterol-sensitive miR-96/182/183 cluster was found to be significantly increased in livers from ZDF rats treated with colesevelam compared to vehicle controls. Inhibition of miR-182 in vivo attenuated colesevelam-mediated improvements to glycemic control in db/db mice. Hepatic expression of mediator complex subunit 1 (MED1), a nuclear receptor coactivator, was significantly d...
Source: American Journal of Physiology. Gastrointestinal and Liver Physiology - Category: Physiology Authors: Tags: Am J Physiol Gastrointest Liver Physiol Source Type: research