Molecular Regulation of Acute Tie2 Suppression in Sepsis

Objectives: Tie2 is a tyrosine kinase receptor expressed by endothelial cells that maintains vascular barrier function. We recently reported that diverse critical illnesses acutely decrease Tie2 expression and that experimental Tie2 reduction suffices to recapitulate cardinal features of the septic vasculature. Here we investigated molecular mechanisms driving Tie2 suppression in settings of critical illness. Design: Laboratory and animal research, postmortem kidney biopsies from acute kidney injury patients and serum from septic shock patients. Setting: Research laboratories and ICU of Hannover Medical School, Harvard Medical School, and University of Groningen. Patients: Deceased septic acute kidney injury patients (n = 16) and controls (n = 12) and septic shock patients (n = 57) and controls (n = 22). Interventions: Molecular biology assays (Western blot, quantitative polymerase chain reaction) + in vitro models of flow and transendothelial electrical resistance experiments in human umbilical vein endothelial cells; murine cecal ligation and puncture and lipopolysaccharide administration. Measurements and Main Results: We observed rapid reduction of both Tie2 messenger RNA and protein in mice following cecal ligation and puncture. In cultured endothelial cells exposed to tumor necrosis factor-α, suppression of Tie2 protein was more severe than Tie2 messenger RNA, suggesting distinct regulatory mechanisms. Evidence of protein-level regulation was found in ...
Source: Critical Care Medicine - Category: Emergency Medicine Tags: Online Laboratory Investigations Source Type: research