Improved myocardial perfusion PET imaging with MRI assisted reconstruction incorporating multi-resolution joint entropy.

Improved myocardial perfusion PET imaging with MRI assisted reconstruction incorporating multi-resolution joint entropy. Phys Med Biol. 2018 Aug 08;: Authors: Wang X, Yang B, Adams MP, Gao X, Karakatsanis NA, Tang J Abstract Myocardial perfusion (MP) PET imaging plays an important role in risk assessment and stratification of patients with coronary artery disease. In this work, we developed an anatomy-assisted maximum a posteriori (MAP) reconstruction method incorporating a wavelet-based joint entropy (WJE) prior for MP PET imaging. Using the XCAT phantom, we first simulated three MP PET datasets, one with normal perfusion and the other two with non-transmural and transmural regionally reduced perfusion of the left ventricular myocardium. Moreover, we simulated MP PET datasets of the three cases with respiratory and cardiac (RC) motion to represent realistic clinical situation. Two MR image datasets of the same subjects without and with RC motion were simulated without the perfusion defect correspondence. The proposed method was evaluated quantitatively in terms of noise-contrast tradeoff, and compared with the post-smoothed maximum-likelihood and the conventional MAP methods. The detectability of perfusion defects with various myocardial coverage was also evaluated through receiver operating characteristic analysis using the channelized Hotelling observer. The results demonstrated that the WJE-MAP method improved the noise-contrast ...
Source: Physics in Medicine and Biology - Category: Physics Authors: Tags: Phys Med Biol Source Type: research