Enzymatic Hydrolysis of Pneumococcal Capsular Polysaccharide Renders the Bacterium Vulnerable to Host Defense [Cellular Microbiology: Pathogen-Host Cell Molecular Interactions]

This study aimed to evaluate the protective role of a glycoside hydrolase, Pn3Pase, targeting the CPS of type 3 S. pneumoniae, which is one of the most virulent serotypes. We have assessed the ability of Pn3Pase to degrade the capsule on a live type 3 strain. Through in vitro assays, we observed that Pn3Pase treatment increases the bacterium's susceptibility to phagocytosis by macrophages and complement-mediated killing by neutrophils. We have demonstrated that in vivo Pn3Pase treatment reduces nasopharyngeal colonization and protects mice from sepsis caused by type 3 S. pneumoniae. Due to the increasing shifts in serotype distribution, the rise in drug-resistant strains, and poor immune responses to vaccine-included serotypes, it is necessary to investigate approaches to combat pneumococcal infections. This study evaluates the interaction of pneumococcal CPS with the host at molecular, cellular, and systemic levels and offers an alternative therapeutic approach for diseases caused by S. pneumoniae through enzymatic hydrolysis of the CPS.
Source: Infection and Immunity - Category: Infectious Diseases Authors: Tags: Cellular Microbiology: Pathogen-Host Cell Molecular Interactions Source Type: research