Chronic cerebral hypoperfusion accelerates Alzheimer's disease pathology with the change of mitochondrial fission and fusion proteins expression in a novel mouse model.

Chronic cerebral hypoperfusion accelerates Alzheimer's disease pathology with the change of mitochondrial fission and fusion proteins expression in a novel mouse model. Brain Res. 2018 Jun 04;: Authors: Feng T, Yamashita T, Zhai Y, Shang J, Nakano Y, Morihara R, Fukui Y, Hishikawa N, Ohta Y, Abe K Abstract Mitochondrial dynamically undergo massive fusion and fission events to continuously maintain their function in cells. Although an impaired balance of mitochondrial fission and fusion was reported in in-vitro and in-vivo Alzheimer's disease (AD) model, changes of mitochondrial fission and fusion proteins have not been reported in AD with chronic cerebral hypoperfusion (HP) as an etiological factor related to the development of elder AD. To clarify the impacts of HP on mitochondrial fission and fusion, related oxidative stress in the pathogenesis of AD, and protective effect of galantamine, the novel AD with HP mouse model (APP23 + HP) was applied in this project. Compared with APP23 mice, APP23 + HP mice greatly enhanced the number of Aβ oligomer-positive/phosphorylated tau (pTau) cells, the expression of mitochondrial fission proteins (Drp1 and Fis1), and decreased the expression of mitochondrial fusion proteins (Opa1 and Mfn1) in the cerebral cortex (CTX) and thalamus (TH) at 12 month (M) of age. Moreover, the expression of peroxidation products (4-HNE and 8-OHdG) showed a significant increase in CTX and TH of APP23 + HP mice at ...
Source: Brain Research - Category: Neurology Authors: Tags: Brain Res Source Type: research