Matrix metalloproteinase-2: A key regulator in coagulation proteases mediated human breast cancer progression through autocrine signaling

Publication date: September 2018 Source:Biomedicine & Pharmacotherapy, Volume 105 Author(s): Kaushik Das, Ramesh Prasad, Shabbir Ahmed Ansari, Abhishek Roy, Ashis Mukherjee, Prosenjit Sen Aims Cell invasion is attributed to the synthesis and secretion of proteolytically active matrix-metalloproteinases (MMPs) by tumor cells to degrade extracellular matrix (ECM) and promote metastasis. The role of protease-activated receptor 2 (PAR2) in human breast cancer migration/invasion via MMP-2 up-regulation remains ill-defined; hence we investigated whether TF-FVIIa/trypsin-mediated PAR2 activation induces MMP-2 expression in human breast cancer. Main methods MMP-2 expression and the signaling mechanisms were analyzed by western blotting and RT-PCR. MMP-2 activity was measured by gelatin zymography. Cell invasion was analyzed by transwell invasion assay whereas; wound healing assay was performed to understand the cell migratory potential. Key findings Here, we highlight that TF-FVIIa/trypsin-mediated PAR2 activation leads to enhanced MMP-2 expression in human breast cancer cells contributing to tumor progression. Knock-down of PAR2 abrogated TF-FVIIa/trypsin-induced up-regulation of MMP-2. Again, genetic manipulation of AKT or inhibition of NF-ĸB suggested that PAR2-mediated enhanced MMP-2 expression is dependent on the PI3K-AKT-NF-ĸB pathway. We also reveal that TF, PAR2, and MMP-2 are over-expressed in invasive breast carcinoma tissues as compared to normal. Knock...
Source: Biomedicine and Pharmacotherapy - Category: Drugs & Pharmacology Source Type: research