Vascular Remodeling, Oxidative Stress, and Disrupted PPAR γ Expression in Rats of Long-Term Hyperhomocysteinemia with Metabolic Disturbance.

Vascular Remodeling, Oxidative Stress, and Disrupted PPARγ Expression in Rats of Long-Term Hyperhomocysteinemia with Metabolic Disturbance. PPAR Res. 2018;2018:6738703 Authors: Huo Y, Wu X, Ding J, Geng Y, Qiao W, Ge A, Guo C, Lv J, Bao H, Fan W Abstract Hyperhomocysteinemia, a risk factor for vascular disease, is associated with metabolic syndrome. Our study was aimed at exploring the effect of long-term hyperhomocysteinemia with metabolic disturbances on vascular remodeling. We also studied oxidative stress and expression of PPARγ in the coronary arteriole as a possible mechanism underlying vascular remodeling. Rats were treated with standard rodent chow (Control) or diet enriched in methionine (Met) for 48 weeks. Plasma homocysteine, blood glucose, serum lipids, malondialdehyde (MDA), superoxide dismutase (SOD), and nitric oxide (NO) levels were measured. Coronary arteriolar and carotid arterial remodeling was assessed by histomorphometric techniques and the expression of PPARγ in vessel wall was investigated. In Met group, an increase in the level of fasting blood glucose, serum triglyceride, total cholesterol, MDA, and NO, a decline in the serum SOD level, and increased collagen deposition in coronary and carotid arteries were found. Moreover, we detected decreased expression of PPARγ in the coronary arterioles in Met group. In summary, our study revealed metabolic disturbances in this model of long-term hyperhomocysteinemia...
Source: PPAR Research - Category: Genetics & Stem Cells Tags: PPAR Res Source Type: research