Effect of Mycobacterium tuberculosis Rv3717 on cell division and cell adhesion

Publication date: Available online 17 February 2018 Source:Microbial Pathogenesis Author(s): Xin Li, Jiajia He, Weizhe Fu, Pingping Cao, Siyi Zhang, Tao Jiang Mycobacterium tuberculosis Rv3717 has been identified as a zinc-dependent amidase which can hydrolyze peptidoglycan (PG). To demonstrate the relationship of Rv3717 and cell division, in this study, Rv3717 gene was first amplified and expressed and the resulting protein was purified by using a His-tagged approach. M. smegmatis mc2155, a fast-growing and nonpathogenic mycobacterium was used to evaluate the effect of Rv3717 on cell division. Scan electron microscope (SEM) results indicated that M. smegmatis with division site was more exhibited and some of the cells turned larger in size after Rv3717 treatment. Transmission electron microscope (TEM) results revealed that MSMEG_6281 gene knockout strain named M sm-ΔM_6281 (MSMEG_6281 in M. smegmatis mc2155 is the homologous gene of Rv3717) tended to have a division defect with a severely abnormal morphology, and division septa were distorted. Gene expression analysis indicated also that the gene involved in cell division such as M. smegmatis ftsZ was significantly up-regulated with treatment time. The findings demonstrated that physiological role of Rv3717 was related to cell division and regulated possibly division septum formation. Further, fibronectin (Fn) binding ability of Rv3717 was evaluated by protein binding experiment, and the results confirmed the intera...
Source: Microbial Pathogenesis - Category: Infectious Diseases Source Type: research