Caffeine Ingestion Attenuates Fatigue-induced Loss of Muscle Torque Complexity

ABSTRACTThe temporal structure, or complexity, of muscle torque output decreases with neuromuscular fatigue. The role of central fatigue in this process is unclear.PurposeWe tested the hypothesis that caffeine administration would attenuate the fatigue-induced loss of torque complexity.MethodsEleven healthy participants performed intermittent isometric contractions of the knee extensors to task failure at a target torque of 50% maximal voluntary contraction, with a 60% duty factor (6-s contraction, 4-s rest), 60 min after ingesting 6 mg·kg−1 caffeine or a placebo. Torque and surface EMG signals were sampled continuously. Complexity and fractal scaling of torque were quantified using approximate entropy (ApEn) and the detrended fluctuation analysis (DFA) α scaling exponent. Global, central, and peripheral fatigue was quantified using maximal voluntary contractions with femoral nerve stimulation.ResultsCaffeine ingestion increased endurance by 30% ± 16% (mean ± SD; P = 0.019). Complexity decreased in both trials (decreased ApEn, increased DFA α; both P
Source: Medicine and Science in Sports and Exercise - Category: Sports Medicine Tags: Basic Sciences Source Type: research