Picroside II Exerts a Neuroprotective Effect by Inhibiting mPTP Permeability and EndoG Release after Cerebral Ischemia/Reperfusion Injury in Rats

AbstractMitochondrial membrane permeability is closely related to cerebral ischemia/reperfusion (I/R) injury. This paper explored the neuroprotective effect of picroside II (Picr), which inhibits the permeability of mitochondrial permeability transition pore (mPTP) and endonuclease G (EndoG) release from mitochondria into cytoplasm after cerebral I/R in rats. After 2  h of cerebral ischemia and 24 h of reperfusion in rats with different intervention measures, the neurobehavioral function, infarction volume, and reactive oxygen species (ROS) content in brain tissues were observed by modified neurological severity scale (mNSS), triphenyl tetrazolium chloride (TT C) staining, and enzyme-linked immunosorbent assay, respectively. The permeability of mPTP was assayed using spectrophotometry. The morphology and apoptotic cells of brain tissues were observed by hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay, resp ectively. The expressions of EndoG and voltage-dependent anion channel 1 (VDAC1) were determined by immunohistochemical assay and western blot. The Picr group exhibited clear decreases in mNSS scores, ROS content, number of apoptotic cells, mPTP permeability and expression of VDAC1, and EndoG in cyt oplasm and nuclei, and the morphology of brain tissue was improved as compared with the model group (P <  0.05). Picr could attenuate cerebral I/R injury by downregulating the expression of VDAC1 and decreasing the perme...
Source: Journal of Molecular Neuroscience - Category: Neuroscience Source Type: research