Madecassoside protects BV2 microglial cells from oxygen-glucose deprivation/reperfusion-induced injury via inhibition of the toll-like receptor 4 signaling pathway.

In this study, an in vitro ischemic model of oxygen-glucose deprivation followed by reperfusion (OGD/R) was used to investigate the role of the toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-kappa B (NF-κB) pathway in the neuroprotective and anti-inflammatory effects of MA. BV2 microglia viability after OGD/R, treated with or without MA, was measured using the MTT assay. Messenger RNA and protein expression of pro-inflammatory cytokines (tumor necrosis factor α [TNF-α], interleukin-1β [IL-1β], interleukin-6 [IL-6]) were measured using real-time polymerase chain reaction (RT-PCR) and ELISA after OGD/R or lipopolysaccharide treatment. Expression of TLR4/MyD88 and NF-κB p65 were measured using RT-PCR, Western blotting, and immunofluorescence analysis. MA significantly rescued OGD/R-induced cytotoxicity in BV2 microglia. Meanwhile, MA suppressed the secretion of pro-inflammatory mediators, including TNF-α, IL-1β, and IL-6, induced by OGD/R or lipopolysaccharide in BV2 microglia. The mechanism of its neuroprotection and anti-inflammation from OGD/R may involve the inhibition of activation of TLR4 and MyD88 in BV2 microglia, and the blockage of NF-κB p65 nuclear translocation. MA exhibited a significant neuroprotective effect against I/R injury in both in vivo and in vitro experiments by attenuating microglia-mediated neuroinflammation via inhibition of the TLR4/MyD88/NF-κB signaling pathway. PMID: 29198964 [PubMed - as suppli...
Source: Brain Research - Category: Neurology Authors: Tags: Brain Res Source Type: research