Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds.

Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds. Phys Med Biol. 2017 Nov 29;: Authors: Maneas E, Xia W, Nikitichev DI, Daher B, Manimaran M, Wong RYJ, Chang CW, Rahmani B, Capelli C, Schievano S, Burriesci G, Ourselin S, David AL, Finlay M, West SJ, Vercauteren T, Desjardins AE Abstract Here we describe methods for creating tissue-mimicking ultrasound phantoms based on patient anatomy using a soft material called gel wax. To recreate acoustically realistic tissue properties, two additives to gel wax were considered: paraffin wax to increase acoustic attenuation, and solid glass spheres to increase backscattering. The frequency dependence of ultrasound attenuation was well described with a power law over the measured range of 3 to 10 MHz. With the addition of paraffin wax in concentrations of 0 to 8 w/w%, attenuation varied from 0.72 to 2.91 dB/cm at 3 MHz and from 6.84 to 26.63 dB/cm at 10 MHz. With solid glass sphere concentrations in the range of 0.025 to 0.9 w/w%, acoustic backscattering consistent with a wide range of ultrasonic appearances was achieved. Native gel wax maintained its integrity during compressive deformations up to 60%; its Young's modulus was 17.4 ± 1.4 kPa. The gel wax with additives was shaped by melting and pouring it into 3D printed moulds. Three different phantoms were constructed: a nerve and vessel phantom for peripheral nerve blocks, a heart atrium phantom, and a placental...
Source: Physics in Medicine and Biology - Category: Physics Authors: Tags: Phys Med Biol Source Type: research