Salmonella Typhimurium, the major causative agent of foodborne illness inactivated by a phage lysis system provides effective protection against lethal challenge by induction of robust cell-mediated immune responses and activation of dendritic cells

In this study, we developed a genetically inactivated vaccine candidate by introducing lysis plasmid pJHL454 harboring the λ phage holin–endolysin system intoS. Typhimurium; we designated this vaccine JOL1950. In vitro expression of endolysin was validated by immunoblotting, and complete inactivation of JOL1950 cells was observed following 36  h of the lysis. Electron microscopic examinations by scanning electron microscopy and immunogold labeling transmission EM revealed conserved surface antigenic traits of the JOL1950 cells after lysis. An in vivo immunogenicity study in mice immunized with lysed cells showed significantly increased serum IgG, IgG1, and IgG2a levels. Further, we observed markedly increased in vitro cell proliferation and upregulation of Th1, Th2, and Th17 cytokines in the repulsed splenic T-cells of immunized mice. In dendritic cells (DCs) treated with lysed JOL1950, we observed a significant increase in dendri tic cell activation, co-stimulatory molecule production, and levels of immunomodulatory cytokines. In addition, Th1 and Th17 cytokines were also released by naïve CD4+ T-cells pulsed with primed DCs. Lysed JOL1950 also protected against lethal challenge in immunized mice. Together, these results indicate that our vaccine candidate has great potential to induce cell-mediated immunity againstS. Typhimurium by facilitating the activation of DCs.
Source: Veterinary Research - Category: Veterinary Research Source Type: research