TRPC1 stimulates calcium ‑sensing receptor‑induced store‑operated Ca2+ entry and nitric oxide production in endothelial cells.

TRPC1 stimulates calcium‑sensing receptor‑induced store‑operated Ca2+ entry and nitric oxide production in endothelial cells. Mol Med Rep. 2017 Aug 04;: Authors: Qu YY, Wang LM, Zhong H, Liu YM, Tang N, Zhu LP, He F, Hu QH Abstract Store‑operated Ca2+ entry (SOCE) via store‑operated Ca2+ channels (SOCC), encoded by transient receptor potential canonical (TRPC) channel proteins, is an important underlying mechanism regulating intracellular Ca2+ concentration ([Ca2+]i) and various intracellular functions in endothelial cells (ECs). TRPC1, the probable candidate for SOCC, is expressed in ECs. Ca2+‑sensing receptor (CaSR) is functionally expressed in vascular endothelium and is important in Ca2+ mobilization and cardiovascular functions. To date, there have been no reports demonstrating an association between CaSR and TRPC1 in ECs. The present study investigated the effects of TRPC1 on CaSR‑induced Ca2+ influx and nitric oxide (NO) production in human umbilical vein ECs (HUVECs). TRPC1 and CaSR proteins in HUVECs were measured by immunostaining and western blot analysis. [Ca2+]i levels were measured using the Fura‑2‑acetoxymethyl ester method. The indicator 3‑amino, 4‑aminomethyl‑2, 7‑difluorescein diacetate was used to measure NO production in HUVECs. The expression of TRPC1 protein in HUVECs was silenced by transfecting HUVECs with small interfering RNA (siRNA) against TRPC1. Although changes in extracellular ...
Source: Molecular Medicine Reports - Category: Molecular Biology Tags: Mol Med Rep Source Type: research