Lysophosphatidic acid enhances human umbilical cord mesenchymal stem cell viability without differentiation via LPA receptor mediating manner

In this study we aimed to explore the effects of LPA on the survival and differentiation of MSCs and its availability in cell therapy. We found that LPA stimulated hUC-MSC proliferation and protected hUC-MSCs from lipopolysaccharide (LPS) induced apoptosis. We also observed that CD29, CD44, CD73, CD90 and CD105 were expressed, whereas CD34 and CD45 were not expressed in hUC-MSCs, and these makers have no change in LPA containing medium, which indicated that LPA accelerated the survival of hUC-MSCs in an undifferentiating status. We also demonstrated that higher expressed LPAR1 involved in LPA stimulated cell survival action. LPA stimulated cell proliferation was associated with LPAR1 mediated Gi/o-proteins/ERK1/2 pathway. On the other hand, LPA protected hUC-MSCs from LPS-induced apoptosis through suppressing caspase-3 activation by LPAR1 coupled with a G protein, but not Gi/o or Gq/11 in hUC-MSC. Collectively, this study demonstrated that LPA increased the proliferation and survival of hUC-MSCs without differentiation through LPAR1 mediated manner. Our findings provide that LPA as a anti-apoptotic agent having potential application prospect in cell transplantation and stem cell therapy.
Source: Apoptosis - Category: Molecular Biology Source Type: research