Taxifolin reduces the cholesterol oxidation product-induced neuronal apoptosis by suppressing the Akt and NF- κB activation-mediated cell death.

Taxifolin reduces the cholesterol oxidation product-induced neuronal apoptosis by suppressing the Akt and NF-κB activation-mediated cell death. Brain Res Bull. 2017 Jul 11;: Authors: Kim A, Nam YJ, Lee CS Abstract The taxifolin effect on the cholesterol oxidation product-induced neuronal apoptosis was investigated using differentiated PC12 cells and human neuroblastoma SH-SY5Y cells. 7-ketocholesterol induced phosphorylation of Akt, and increase in the levels of cytosolic and nuclear NF-κB p65, cytosolic NF-κB p50 and cytosolic phosphorylated-IκB-α levels in PC12 cells. The cholesterol oxidation products also induced a decrease in the levels of Bid and Bcl-2, increase in the levels of p53 and Bax, loss of the mitochondrial transmembrane potential, release of cytochrome c, activation of caspases (-8, -9 and -3), production of reactive oxygen species, depletion of GSH and cell death in both cell lines. Taxifolin, N-acetylcysteine, trolox, Akt inhibitor and Bay11-7085 attenuated the cholesterol oxidation product-induced changes in the apoptosis-related protein levels, activation of the Akt and NF-κB, reactive oxygen species production, GSH depletion and cell death. These results show that taxifolin may reduce the cholesterol oxidation product-induced neuronal apoptosis by suppressing the Akt and NF-κB activation-mediated cell death. The suppressive effect appears to be attributed to the inhibition of reactive oxygen species produ...
Source: Brain Research Bulletin - Category: Neurology Authors: Tags: Brain Res Bull Source Type: research