Design and Comparative Evaluation of the Anticonvulsant Profile, Carbonic-Anhydrate Inhibition and Teratogenicity of Novel Carbamate Derivatives of Branched Aliphatic Carboxylic Acids with 4-Aminobenzensulfonamide.

Design and Comparative Evaluation of the Anticonvulsant Profile, Carbonic-Anhydrate Inhibition and Teratogenicity of Novel Carbamate Derivatives of Branched Aliphatic Carboxylic Acids with 4-Aminobenzensulfonamide. Neurochem Res. 2017 Mar 09;: Authors: Bibi D, Mawasi H, Nocentini A, Supuran CT, Wlodarczyk B, Finnell RH, Bialer M Abstract Epilepsy is one of the most common neurological diseases, with between 34 and 76 per 100,000 people developing epilepsy annually. Epilepsy therapy for the past 100(+) years is based on the use of antiepileptic drugs (AEDs). Despite the availability of more than twenty old and new AEDs, approximately 30% of patients with epilepsy are not seizure-free with the existing medications. In addition, the clinical use of the existing AEDs is restricted by their side-effects, including the teratogenicity associated with valproic acid that restricts its use in women of child-bearing age. Thus, there is an unmet clinical need to develop new, effective AEDs. In the present study, a novel class of carbamates incorporating phenethyl or branched aliphatic chains with 6-9 carbons in their side-chain, and 4-benzenesulfonamide-carbamate moieties were synthesized and evaluated for their anticonvulsant activity, teratogenicity and carbonic anhydrase (CA) inhibition. Three of the ten newly synthesized carbamates showed anticonvulsant activity in the maximal-electroshock (MES) and 6 Hz tests in rodents. In mice, 3-methyl-...
Source: Neurochemical Research - Category: Neuroscience Authors: Tags: Neurochem Res Source Type: research